
APPENDIX:
Mathematical

Description of the aiNet

Introduction

Due to the growth interest on the aiNet application, and many questions which arise from academic
nature of user’s research work, we prepared an appendix to the original User’s Manual of the aiNet
application, version 1.0. It begins with the explanation of theoretical background, where the
derivation of the build-in method is presented. This is followed by simple explanation how and
why is the aiNet an artificial neural network (ANN). The aiNet neuron structure is graphically
presented, where it becomes clear that aiNet is an ANN. Finally, the list of references is given.

According to the authors’ knowledge about ANN, their conviction, and also to the known existing
tools (AN nets), the aiNet is a kind of ANN. It is based on a self-organizing system, called neural
network-like system, presented by Grabec (see /GRAB90a/ and /GRAB90b/). It is similar to the
method of the nearest neighbor, Learning Vector Quatization Network /KOHO88/, and also to the
probabilistic neural network, proposed by Specht /SPEC88/. All of the above mentioned methods
have the same basement and similar rules for describing various phenomena. On the other hand,
they are different compared to each other in the sense like various paradigms used in
backpropagation ANNs differ from each other, or various types of ANNs differ from each other.

One important thing that should be mentioned is how ANNs are related to the statistical methods.
(see /PREC95/). Some of them have a little to do with statistics, some of them would not be
considered as statistical methods, but most neural networks that can learn to generalize effectively
from noisy data are similar or identical to statistical methods. For example, probabilistic neural
nets are identical to kernel discriminant analysis. On the other hand, Kohonen’s self organizing
maps have no close relativities in the existing statistical literature, but self-organization of neurons,
proposed by Grabec /GRAB90a/ is very similar to the Kohonen’s self organization process and is
based on statistical principles. Also, feedforward nets are a subset of the class of non-linear
regression and discriminant models. Statisticians have studied the properties of this general class
but had not considered the specific case of feedforward ANN before such networks became
popular. It is obvious that it is very hard (or even impossible) to find a widely accepted definition
which would be able to classify between ANNs and statistical methods. Nevertheless, the most
important thing is that ANNs allow different view on problems which can not be solved by (exact)
statistical methods due to their theoretical limitations.

And how is the aiNet related to the ANNs? According to one of the "soft" definitions of ANNs, the
ANNs are networks of many simple processors "units", each possibly having a local memory. The
processors are connected by unidirectional communication channels "connections", which carry
numeric data. The units operate only on their local data and on the inputs they receive via
connections. As will be shown the aiNet can be presented as a kind of neural network according to
the above definition.

And how is the aiNet related to the statistics? It is actually derived from the statistical environment,
which can be clearly seen from the derivation that follows.

aiNet: Appendix 1

Theoretical backgrounds of the aiNet

Basic principles and derivation

In formulating a modeler of a phenomena we assume that one partial observation of a phenomenon
can be described by L variables mi. One such observation can be written then as a vector, so called
model vector:

mv (, , ... ,)mv mv mv L1 2 /1/.

To describe the whole phenomenon properly one needs to collect data from many observations of
the same phenomenon. The complete phenomenon is then described by a sample of the N
measurements (data base or knowledge base) that are described by a finite set of model vectors:

 model mv mv mv1 2, , ... , N /2/.

Expression /2/ can be written in matrix form as:

mv1 = m11 m12 ... m1L

mv2 = m21 m22 ... m2L

...

...
mvN = mN1 mN2 ... mNL

/3/.

Let us assume that each model vector consist of two partial vectors: first vector represents the input
variables of the phenomenon and the other vector the output variables. We will label the first one
as vector P, and the other as a vector Q:

P

Q

m m m

m m m
M

M M L

1 2

1 2

, , ... , , #

, , ,

 ... input variables

 ... output variables
/4/.

Concatenation of both vectors gives the original model vector. This can be written as:

 mv P Q m m m m mM M L1 2 1, , ... , , , ... , /5/,

or in matrix form:

2 aiNet: Appendix

mv1 = m11 m12 ... m1M m1,M+1 ... m1L

mv2 = m21 m22 ... m2M m2,M+1 ... m2L

...

...
mvN = mN1 mN2 ... mNM mN,M+1 ... mNL

/6/.

Shadowed part belongs to the partial vector Q.

Vector mv (herein after labeled as m) is treated as a random variable, the properties of which are
characterized by the density of the joint probability function:

 f
d P

dm dm dm

L

L
m

1 2 ...
/7/.

Let us assume that partial information about the phenomenon is given by truncated vector P. The
problem is how to estimate the remaining (L-M) unknown components of the complementary
vector Q on the basis of known information given by vector P. Because of the random nature of the
sample vector m, there exist many possible realizations of vector Q which correspond to the known
vector P. As the best solution we choose the estimator

 Q q P Q /8/,

which minimizes the mean-square error, expressed as

D E dP

f d d

Q q P Q q P m

Q q P P Q P Q
PQ

 ()

2 2

2 /9/.

Where dP(m) is defined as (see also /7/):

 dP f dm dm dm f d dLm m P Q P Q 1 2 ... /10/.

The unknown function q P can be obtained by the standard variational procedure:

D f d d

f d d

2

2

Q q P q P P Q P Q

Q q P P Q P Q

PQ

PQ

/11/,

from where, while we assume f P Q is known function and therefore

aiNet: Appendix 3

 f P Q 0 /12/

and while we know that minimum will be reached if D 0 we obtain:

 Q q P q P P Q P Q
PQ

 f d d 0 /13/.

We can rewrite the expression /13/ as:

 q P P Q q P P Q Q
P Q
 d f d /14/.

While q P 0 , we obtain

 Q q P P Q Q
Q

 f d 0 /15/,

and finally

 Q P Q Q q P P Q Q
Q Q

f d f d /16/.

This leads to the expression

q P

Q P Q Q

P Q Q
Q

Q

f d

f d
/17/.

Conditional probability distribution is defined by

f
f

f
f

f d
Q P

P Q
P

P Q

P Q Q
Q

 /18/.

Then the expression /17/ can be written as

 q P Q Q P Q
Q

 f d /19/.

The expression /19/ is the optimal estimator of the conditional average.

In the experimental description of a physical phenomenon, the probability distribution function is
not known analytically and therefore must be statistically estimated from observed data. Set of N

4 aiNet: Appendix

independent but statistically equivalent partial observations of the phenomenon is defined as model
vector data base. When a statistical weight 1/N is assigned to each observation the joint
probability density can be expressed as

 f
N n

n

N

m m m

1

1
 /20/,

where

m

 m

x
x
x

i
i

L

1

1 0
0 0

 ... vector form

if
if

 ... scalar form
;
;

/21/,

Note: Please, do not confuse the function - expressions /20/, /21/ and expressions in further
derivation - with the variational operator which was used in /11/, /12/, /13/, /14/.

The density of marginal probability distribution function in M-dimensional subspace is then given
by

 f
N n

n

N

P P P

1

1
 /22/,

where

 P Pn n n nM i
i

M

m m m m

1 2

1
, , ... , and /23/.

f(P) can be approximated by

 f f d
N i

i

N

P P Q Q P P
Q

1
1
 /24/.

The conditional probability can then be represented by

f

n n
n

N

n
n

NQ P
Q Q P P

P P

1

1

/25/.

aiNet: Appendix 5

The simple formula /25/ cannot be applied directly because of the function. We try to
approximate the function by a smooth, regular function. Among various functions, the Gaussian
function seems to be the most appropriate:

 m m
m

2

2

2

1
22 2e e
mi

i

N

/26/.

 in the expression is a constant, while the part 22 is directly correlated to the so called penalty
coefficient. How to choose the right value is another question and can be solved in the iteration
procedure, as is done in the aiNet.

The conditional average is approximated by

f

i
i

N

i

i
i

NQ P
Q Q P P

P P

1

1

/27/.

When this function is inserted into expression /18/ we obtain

q P Q
Q Q P P

P P
Q

Q
Q Q P P

P P

P P
Q Q Q P P

Q

i
i

N

i

i
i

N

j
j

N j i
i

N

i

i
i

N

i
i

N j
j

N

j i
i

N

i

d1

1

1

1

1

1

1 1

1

/28/.

We can see that

Q Q

P P P P

j i ij ij

ij
j

N

j i

i j
i j

where

and therefore

1
0

1

;
;

/30/.

6 aiNet: Appendix

Finally we obtain the following expression:

 q P
P P

Q P P Q

 1

1

1 1

j
j

N i i
i

N

i
i

n

ic
/31/,

where

c j

j

i
i

N

P P

P P
1

/32/.

Now we have the final expression for the optimal estimator. Presented procedure corresponds to an
associative recognition of some unknown properties of the phenomenon on the basis of incomplete
observation or experience, obtained by previous complete observation. The derived procedure can
be considered as a kind of a primitive intelligence and it is applicable (as it will be shown) to the
development of ANNs. In one of such treatments a particular model vector mn is characterized as a
neuron. When driven by a particular input vector P, the neuron is excited as described by the
amplitude cn and contributes to the complete output of the network q . It should be noted that in
our further explanation, the aiNet will be presented in a more “natural” way, similar to the existing
representations of the ANNs.

aiNet: Appendix 7

Graphical presentation of the aiNet

Figure A.1 shows the graphical presentation of the aiNet, and as can be seen it is very similar to the
other ANNs. To compare it exactly with other supervised ANNs, we should distinguish between
training and prediction phase. In the aiNet is the training phase very quick and corresponds to the
presentation of the model vectors (loading the data base or aiNet data file) to the network - aiNet
(see also: probabilistic neural network - PNN from NeuralWare, Inc. /NEUR91/). Prediction phase
corresponds to the calculation of values of processing elements and calculating the unknown output
values of prediction vector (in case of prediction) or output values of model vectors (in case of
filtration of verification for determination of penalty coefficient value).

mi m m m m m m m mi

layer A

layer B

layer C

layer D

1 2 M

11 12 1M 21 22 2M N N2 NM

mo mo mo
1 2 Nd d d1 2 N

po

pi pi pi

Figure A.1: Graphical presentation of the aiNet.

Notations in Figure A.1 have the following meaning:
 p prediction vector,
 m model vector,
 i indicates the neuron, belonging to the input variable,
 o indicates the neuron, belonging to the output variable.
 N number of model vectors,
 M number of input variables of the phenomenon,
 K number of output variables of the phenomenon (K is equal to 1 in presented case,

and is omitted),
 pc penalty coefficient

As it was mentioned earlier, training (or learning) the aiNet ANN corresponds to the presentation
of the model vectors to the net. The weights on connections are either equal to one or equal to zero.
The expression for weight adaptation can be written as:

w wij ij kj ,

8 aiNet: Appendix

where wij is equal to 1.0, and ij is defined in /30/.

The following expressions, which describe the aiNet in the feedforward - prediction mode, are
based completely on the derived expression /31/. It should be noted that such network has two
hidden layers (layer B and layer C). The number of neurons in layer B is equal to the product of the
number of all model vectors N and the number of input variables M (N M), while the number of
neurons in the layer C is equal 2 times the number of model vectors. For the sake of simplicity, we
will assume that we have only one output (unknown) variable.

Network works in prediction mode according to the following scheme:

 layer A: value of the neuron: X pi
A

i ,
transfer function: linear
output value of the neuron: Y f X Xi

A
i
A

i
A () .

 layer B: value of the neuron: X Y miij
B

k
A

ij
k

M

kj

1

transfer function: linear
output value of the neuron: Y f X Xij

B
ij
B

ij
B

2

 layer C: value of the neurons type d: X Yi
C

ij
B

j

M

1

transfer function: linear

output value of the neuron: Y f X pci
C

i
C

X
pc

i
C

e

,
value of the neuron type mo: X moi

C
i ,

transfer function: linear
output value of the neuron: Y f X X moi

C
i
C

i
C

i () .

layer D: value of the neuron: X YD
i
C

i

N

1
,

X Y YD
i
C

i

N

i
C

1

transfer function: linear

output value of the neuron: po Y f X X
X
X

D D D
D

D ,

aiNet: Appendix 9

Why is the aiNet an ANN?

Finally we can give a simple explanation, why the aiNet is an ANN. There are a few necessary
characteristics which should be satisfied, if the network is to be classified as an ANN.

 ANN consists of many simple processors: this can be observed from Figure A.1!
 Each processor (unit, neuron) has its own local memory: this can be deduced from

expressions!
 The processors are connected by unidirectional communication channels, which carry numeric

data: this can be seen from Figure A.1 and from expressions. It should be mentioned, that
connections (weights) are not changed; they have values either 0 or 1!

 The units operate only on their local data and on the inputs they receive via connections: this
can be seen from Figure A.1 and from expressions!

 While units operate on their local data, ANN can work in parallel mode: this can be observed
from Figure A.1 and from expressions!

As can be deduced, the aiNet presented in the Figure A.1 and described with above expressions,
fulfills all demands to be classified as an ANN.

It should be noted here that classic comparison of biological and artificial NN (see the above
example) is done on very low level which corresponds to the state when ANNs are simulated on a
hardware (and by software, too). On the contrary, the functionality of ANNs can be compared to
the human thinking in general, which corresponds to very high level comparison: We collect
information from outside world, and then we produce conclusions on the basis of these data using a
kind of simple statistical regression. While we are limited in an available conciseness memory
space, we make a kind of self-organization mapping, when the number of information becomes to
high; each information represents the model vector about the phenomenon and might correspond to
the one single neuron (see /GRAB90b/). According to this we have only limited (optimal) number
of information of the phenomenon in the conciseness memory at once. But, if we do not have
problems with the physical memory space (or hard disk space) on the computers, we do not need
the self-organization process, which is usually very complicated iterative (learning) process.
Avoiding self-organization process will have consequence only on the time used for the prediction,
and never on the quality of the predictions.

10 aiNet: Appendix

References

/GRAB90a/ Grabec, I. Self-Organization of Neurons Described by the Maximum-
Entropy Principle, Biol. Cybern., 63, pp. 403-409, 1990.

/GRAB90b/ Grabec, I. Modeling of Natural Phenomena by a Self-Organizing System,
Proc. ECPD NEUROCOMPUTING, Vol. 1, no. 1, 1990.

/GRAB90c/ Grabec, I., Prediction of a chaotic time series by a self-organizing neural
network, Dynamic Days, Dusseldorf, 1990.

/GRAB91/ Grabec, I. & Sachse, W., Automatic modeling of physical phenomena:
Application to ultrasonic data, J. Appl. Phsy. 69 (9), 1991.

/GRAB93/ Grabec, I., Optimization of kernel-type density estimator by the principle of
maximal self-consistency, Neural Parallel & Scientific Computations, 1, pp.
83-92, 1993

/SPEC88/ Specht, D. F., Probabilistic Neural Networks for Classification, Mapping or
Associative Memory, ICNN, Conference Proc., 1988.

/KOHO88/ Kohonen, T., et al., Statistical Pattern Recognition with Neural Networks:
Benchmark Studies, Proceedings of the 2nd Annual IEEE International
Conference on Neural Networks, Vol. 1, 1988.

/PREC95/ Prechelt, L., Neural-Net-FAQ, URL: http://wwwipd.ira.uka.de/-
prechelt/FAQ/neural-net-faq.html, see Answers to the Questions (No. 11, Last
Modified: 1995/03/02), 1995.

/NEUR91/ Neural Computing, NeuralWare, Inc., 1991.

